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Abstract
We determine completely all tiles of one-dimensional cut-and-project
quasicrystals which have a cubic irrationality as self-similarity factor and are
given in terms of connected rectangular acceptance windows. It is shown that
there are at least five and at most nine tiles, and they are indicated explicitly
depending on the lengths of the two acceptance windows in terms of which the
quasicrystals are defined.

PACS number: 61.44.Br

1. Introduction

The mathematical properties of cut-and-project quasicrystals [20] or model sets [19], especially
the structure of their tiling sequences, are important for applications in physics, because these
point sets can be used as mathematical models for the location of atoms in quasicrystals [22].
All quasicrystals discovered experimentally so far have 5-fold [22], 8-fold [26], 10-fold [1, 3,
4] or 12-fold [7] rotational symmetry, and correspond thus to the geometries underlying the
lowest order rotational symmetries related to quadratic irrational numbers.

We therefore expect that if quasicrystals related to other types of irrational numbers such
as cubic irrationalities occur in nature, these are most probably also the cases corresponding to
the geometries underlying the rotational symmetry of lowest order related to these irrational
numbers. We therefore focus here on the case of 7-fold rotational symmetry, which is the
rotational symmetry of lowest order related to a cubic irrational number. The corresponding
irrationality is the Pisot number β = 1 + 2 cos

(
2π
7

)
. It is a solution of the cubic equation

X3 = 2X2 + X − 1 (1)

and the other two solutions of modulus smaller than 1 are

β ′ = 1− 2 cos

(
3π

7

)
.= 0.555 β ′′ = 1− 2 cos

(π

7

)
.= −0.802. (2)
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In general, an n-fold symmetry corresponds to an irrational number of order φ(n)

2 where
φ(n) is Euler’s totient function, that is φ(n) is the number of all positive integers k such
that, gcd{k, n} = 1 and k � n. Thus the only cubic irrationalities arise in 7-fold and 9-fold
rotational symmetries.

In the case of crystals, the coordinates of the atoms are labelled by the ring of (ordinary)
integers Z. Points of quasicrystals with 5-fold symmetry, however, are labelled by the ring of
integers Zτ = {a + bτ | a, b ∈ Z}, where τ = 1 + 2 cos

(
2π
5

)
is the golden mean satisfying

the equation x2 = x + 1. The ring Zτ densely covers the real line. Geometrically the ring Zτ

can be obtained by the orthogonal projection of the lattice Z
2 onto the straight line y = τx.

If we do not project the whole lattice Z
2 but only its points belonging to a given strip parallel

to this line, we obtain a one-dimensional cut-and-project set �, which has no accumulation
points. The distances between consecutive points of � are called tiles. A suitable choice of
the strip ensures that � is self-similar, i.e. τ� ⊂ �. The self-similarity plays a crucial role
for the diffraction properties of � [5, 6].

The number of different tiles in cut-and-project sets based on a projection of the lattice
Z

2 is always 2 or 3 [12–14], a fact which is also known as the three gap theorem [23–25] in
number theory.

In contrast to quasicrystals related to quadratic irrational numbers, quasicrystals with
points labelled by the cubic ring of integers Zβ ≡ Z[1, β, β2] = {a + bβ + cβ2 | a, b, c ∈ Z}
can be obtained only by a projection of the lattice Z

3 onto a line. Although no generalization
of the three gap theorem is known for the cut-and-project sets arising via a projection of a
three-dimensional lattice, it is possible to describe the collection of tiles for any quasicrystal
connected to β. The most important property of β allowing this description is that cut-and-
project sets based on β are self-similar with the factor β.

First we give a formal algebraic definition of quasicrystals in terms of two acceptance
windows and then we show its connection to the cut-and-project terminology.

Definition 1.1. Let Zβ := {a + bβ + cβ2 | a, b, c ∈ Z}. Then

�(�1,�2) := {a + bβ + cβ2, |a, b, c ∈ Z, a + bβ ′ + cβ ′2 ∈ �1, a + bβ ′′ + cβ ′′2 ∈ �2} (3)

are called cut-and-project quasicrystals related to the cubic irrationality β, and �1 and �2

are connected subsets of R called acceptance windows.

The point sets �(�1,�2) are cut-and-project sets [19]. Indeed, with the notation
V1 = 〈l1〉R, V2 = 〈l2, l3〉R, where

�l1 = β ′ − β ′′

7
(β ′′β ′,−β ′′ − β ′, 1)

�l2 = β ′′ − β

7
(β ′′β,−β − β ′′, 1) (4)

�l3 = β − β ′

7
(ββ ′,−β − β ′, 1)

any point (a, b, c) from the orthogonal lattice Z
3 can be expressed as

(a, b, c) = (a + bβ + cβ2)�l1 + (a + bβ ′ + cβ ′2)�l2

= (a + bβ ′′ + cβ ′′2)�l3.
(5)

Thus Zβ is formed by the projections of the lattice points (a, b, c) onto V1 according to
V2. Denoting the projection onto V1 by π1 and the projection onto V2 by π2, that is

V1
π1←− Z

3 π2−→ V2 (6)
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Figure 1. Illustration of the points (9).

we have a one-to-one correspondence between π1(Z
3) and π2(Z

3) given by

x ∈ π1(Z
3)→ (x ′, x ′′) ∈ π2(Z

3) (7)

and we can express (3) in definition 1.1 equivalently as

�(�1,�2) = {π1(x) | x ∈ Z
3, π2(x) ∈ �1 ×�2}. (8)

Using results about model sets [19] we thus obtain immediately that � := �(�1,�2)

• is a Delone set;
• has a finite number of tiles;
• is a Meyer set, that is there exists a finite set F such that �−� ⊂ � + F .

We are concerned here, in particular, with the set of tiles or minimal distances T (�1,�2)

in �(�1,�2). An example which we will discuss explicitly is the case �1 = �2 = [0, 1).
The ten smallest points larger than 0 are given by

β2,−1 + β + 3β2,−1 + β + 4β2,−2 + β + 5β2,−2 + 2β + 6β2,−3 + 2β + 8β2,

−4 + 2β + 10β2,−4 + 3β + 10β2,−5 + 3β + 12β2,−5 + 3β + 13β2, . . . (9)

and these points are illustrated in figure 1.
We show that in this example there are seven minimal distances, that is T ([0, 1), [0, 1))

has seven elements, and we determine them explicitly. More generally, we show that the set
of tiles T (�1,�2) for an arbitrary cut-and-project quasicrystal (3) has at least five and at most
nine elements and we give a complete account of all possible tiles T (�1,�2) depending on
the acceptance windows �1 and �2.

The paper is organized as follows. In section 2, we show that due to translation and
scaling properties of the quasicrystals (3) T (�1,�2) indeed only depends on the lengths of
�1 and �2 and that only a certain subset of lengths of acceptance windows, called the relevant
area, has to be considered, because the sets T (�1,�2) for arbitrary �1 and �2 are determined
by the results for T (�1,�2) with window lengths in the relevant area. In section 3, we discuss
the case of �1 = �2 = [0, 1) explicitly, and show how the quasicrystals (3) can be generated
using a stepping function. We use these results to derive the minimal tiles in T (�1,�2) for
arbitrary �1 and �2. Furthermore, we indicate an estimate on the maximal tile and introduce
the terminology of basic quadruples, which will be a key ingredient in our analysis of the
general case. In section 4, we present our main theorem, which contains a classification of
all minimal distances or tiles of quasicrystals (3) depending on the lengths of the acceptance
windows in the relevant area. Based on the results in section 2, one thus obtains T (�1,�2)

for all quasicrystals in definition 1.1. In the conclusion, we finally compare our results with
the case of quasicrystals related to quadratic irrational numbers and discuss the implications
of our results for the three gap theorem in number theory.

2. Geometrically similar quasicrystals

The aim of this section is to restrict the set of quasicrystals �(�1,�2) to a subset such that the
collection of tiles T (�1,�2) of �(�1,�2) for arbitrary choices of �1 and �2 follows from
the results for a member �(�̂1, �̂2) of this subset via a simultaneous rescaling of all elements
in the corresponding set of tiles T (�̂1, �̂2).
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In particular, we introduce an equivalence relation on the set of quasicrystals �(�1,�2)

as follows.

Definition 2.1. We call two quasicrystals �
(
�A

1 ,�A
2

)
and �

(
�B

1 ,�B
2

)
equivalent if they have

the same set of tiles modulo rescaling by a constant factor λ ∈ Zβ , that is if

T
(
�A

1 ,�A
2

) = λT
(
�B

1 ,�B
2

)
. (10)

One has the following lemma.

Lemma 2.2. Let �1 and �2 be bounded semiclosed intervals. �(�1,�2) and �(�1 + c,

�2 + d) are equivalent for any c, d ∈ R.

Proof. According to [2], �(�1,�2) is locally isomorphic to �(�1 + c,�2 + d) for c, d ∈ R.
This implies that T (�1,�2) = T (�1 + c,�2 + d) for c, d ∈ R, and �(�1,�2) and
�(�1 + c,�2 + d) are thus equivalent according to definition 2.1 with λ = 1, which proves
the claim. �

Hence, only the lengths of �1 and �2 are relevant for T (�1,�2).
Furthermore, one has the following proposition.

Proposition 2.3. �([0, l1), [0, l2)) and �([0, l1], [0, l2]) for l1, l2 ∈ R differ in at most two
points.

Proof. Since a straight line x = const or y = const contains at most one point (a′, a′′) ∈ Zβ ,
a quasicrystal with an acceptance window [u, v)× [s, t) and a quasicrystal with an acceptance
window [u, v]× [s, t] differ in at most two points. �

This may change the collection of tiles by at most two new tiles which occur in
�([u, v], [s, t]) exactly once. For example, in the quasicrystal �([0, 1], [0, 1]) the tile of
length 1 occurs precisely once between the points 0 and 1. The same situation may occur
when one considers a window of the form (u, v) × (s, t). To avoid such singularities, we
consider in the following only acceptance windows of the form [u, v)× [s, t), that is we will
restrict all further considerations to quasicrystals of the form �([0, l1), [0, l2)) with l1, l2 ∈ R.

Remark. Acceptance windows (u, v] × (s, t] do not need to be considered, because they
follow via �((u, v], (s, t]) = −�([−v,−u), [−t,−s)).

Then one has the following theorem.

Theorem 2.4. For any �(�1,�2) where �1 and �2 are semiclosed bounded intervals, there
exists (l1, l2) in

LRA = (β ′, 1]×
(

1

β
, 1

]
∪

(
β ′,

β ′

|β ′′|
]
×

( |β ′′|
β

,
1

β

]
(11)

such that �(�1,�2) and �([0, l1), [0, l2)) are equivalent.

Proof. Since β is the Pisot unit, that is βZβ = β ′Zβ = β ′′Zβ = Zβ , one has the following
geometric similarities between quasicrystals with acceptance windows of different lengths:

β�(�1,�2) = �(β ′�1, β
′′�2) (12)

β ′�(�1,�2) = �(β ′′�1, β�2) (13)

β ′′�(�1,�2) = �(β�1, β
′�2). (14)
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Figure 2. The sets H, H̃ and LRA.

Due to (12)–(14), the geometrical properties of �(�1,�2) coincide with the properties of
quasicrystals with the acceptance windows βkβ ′sβ ′′l�1 and β ′kβ ′′sβl�2 with k, s, l ∈ Z.
As ββ ′β ′′ = −1, the three equations (12)–(14) are dependent and one can without loss of
generality consider a rescaling of the acceptance windows by (12) and (13) only, thus

(β ′)s(β ′′)l�1 and (β ′′)s(β)l�2. (15)

Denoting by l(�1) and l(�2) the lengths of the acceptance windows, (log l(�1), log l(�2))

can be transformed into

(log l(�1) + s log β ′ + l log |β ′′|, log l(�2) + s log |β ′′| + l log β). (16)

If we consider the lattice L(�x1, �x2) := Z�x1 + Z�x2, with �x1 = (log β ′, log |β ′′|) and
�x2 = (log |β ′′|, log β) then all quasicrystals are equivalent to some quasicrystals with their
lengths of acceptance windows (l1, l2) restricted by the condition:

(log l1, log l2) = a1 �x1 + a2 �x2 0 � a1, a2 < 1. (17)

We depict the area as H on the left-hand side of figure 2. It is also possible to describe the
quasicrystal with (log l1, log l2) in any other area of R

2, say H̃ , where H̃ is such that there
exists for each x ∈ H̃ a pair (s, l) ∈ Z × Z such that s �x1 + l �x2 ∈ H . For later convenience,
we choose H̃ according to figure 2.

Furthermore, (log l1, log l2) ∈ H̃ is equivalent to (l1, l2) ∈ LRA as depicted on the right-
hand side of figure 2. Since LRA in figure 2 corresponds to (11), this proves the claim. �

We will therefore in the following refer to LRA as the relevant area and restrict all our
further considerations to (l1, l2) ∈ LRA.

3. Reference quasicrystals, minimal and maximal tiles and basic quadruples

As a preparation for the main result, we need to introduce further concepts. Due to the
inclusion

�([0, β ′), [0, |β ′′2 − 1|)) ⊂ �([0, l1), [0, l2)) ⊂ �([0, 1), [0, 1)) (18)
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for all (l1, l2) in the relevant area LRA the quasicrystals �([0, β ′), [0, |β ′′2 − 1|)) and
�([0, 1), [0, 1)) play a significant role in our considerations, because they provide estimates
on the smallest and largest tiles for �([0, l1), [0, l2)) with (l1, l2) ∈ LRA. We will therefore
call them reference quasicrystals in the following.

In particular, in this section we investigate the sets of tiles of these reference quasicrystals
in detail and based on this derive results about the minimal and the maximal tiles in
T ([0, l1), [0, l2)) with (l1, l2) ∈ LRA. Also, we introduce the terminology of basic quadruples,
which will play a key role in our proof of the main result. As we have already mentioned the
collection of tiles depends only on the lengths of acceptance windows. Therefore, we will use
the short-hand notation T (l1, l2) instead of T ([0, l1), [0, l2)) in the following.

3.1. The reference quasicrystal �([0, 1), [0, 1)) and minimal tiles

This case corresponds to the choice of lengths (l1, l2) = (1, 1) and thus to the upper right-hand
corner of LRA in figure 2. Due to (18), it gives a lower bound on the tiles in T (l1, l2) with
(l1, l2) ∈ LRA.

Lemma 3.1. T (1, 1) consists of the following seven elements:

	1 = β 	2 = β2 − 1 	3 = β2 	4 = β2 + β

	5 = 2β2 − 1 	6 = 2β2 + β − 1 	7 = 3β2 + β − 1.
(19)

Proof. Let x1 < x2 be two neighbouring points in �([0, 1), [0, 1)). Then 	 = x2 − x1 is the
length of the corresponding tile and 	 can be written as 	 = K +Lβ +Mβ2 with K, L,M ∈ Z.
Since x ′1, x

′
2, x
′′
1 and x ′′2 ∈ [0, 1), both 	′ and 	′′ ∈ (−1, 1). At first we consider only tiles

with a length less than or equal to 3β2 + β − 1. This leads to the following inequalities for
K,L,M in Z:

0 < 	 = K + Lβ + Mβ2 � 3β2 + β − 1

−1 < 	′ = K + Lβ ′ + Mβ ′2 < 1

−1 < 	′′ = K + Lβ ′′ + Mβ ′′2 < 1.

(20)

We look for solutions, that is we seek lattice points K �f 1 + L �f 2 + M �f 3 with �f 1 = (1, 1, 1),
�f 2 = (β, β ′, β ′′) and �f 3 = (β2, β ′2, β ′′2), inside this parallelepiped. Clearly, the set of

solutions is finite. Using Maple, we obtain nine triples (Ki, Li,Mi), i = 1, . . . , 9, and thus
nine corresponding candidates Bi = Ki + Liβ + Miβ

2 for 	. We state them together with the
approximate values for Bi, B

′
i and B ′′i :

B1 = β
.= 2.247 B ′1

.= 0.555 B ′′1
.= −0.802

B2 = β2 − 1
.= 4.049 B ′2

.= −0.692 B ′′2
.= −0.357

B3 = β2 .= 5.049 B ′3
.= 0.308 B ′′3

.= 0.643

B4 = β2 + β
.= 7.296 B ′4

.= 0.863 B ′′4
.= −0.159

B5 = 2β2 − 1
.= 9.098 B ′5

.= −0.384 B ′′5
.= 0.286

B6 = 2β2 + β − 1
.= 11.345 B ′6

.= 0.171 B ′′6
.= −0.516

B7 = 3β2 − 1
.= 14.147 B ′7

.= −0.076 B ′′7
.= 0.930

B8 = 3β2 + β − 2
.= 15.394 B ′8

.= −0.521 B ′′8
.= −0.872

B9 = 3β2 + β − 1
.= 16.394 B ′9

.= 0.479 B ′′9
.= 0.128.

(21)
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Figure 3. Partition of the acceptance window of �([0, 1), [0, 1)).

Thus, B1, . . . , B9 are the only candidates for tiles of length smaller than or equal to 3β2 +β−1.
It remains to check which of the Bk, k = 1, . . . , 9, are indeed tiles, that is if for a given Bk

there exists a point x ∈ �([0, 1), [0, 1)) such that x + Bk ∈ �([0, 1), [0, 1)) and there is no
Bj with j < k such that x + Bj ∈ �([0, 1), [0, 1)). Since B1 = β is the smallest candidate
in (21), it is a tile if and only if there exists a ∈ Zβ with (a′, a′′) ∈ [0, 1) × [0, 1) such that
(a′, a′′) + (B ′1, B

′′
1 ) ∈ [0, 1)× [0, 1), that is such that

0 � a′ + B ′1 < 1 0 � a′′ + B ′′1 < 1. (22)

Since the set {(a′, a′′) | a ∈ Zβ} is dense in the plane there exist infinitely many points a in
�([0, 1), [0, 1)) for which the right neighbour is a + B1. Therefore B1 is a tile, and we denote
it by 	1. For a ∈ �([0, 1), [0, 1)) with right neighbour a + 	1 we depict (a′, a′′) in figure 3
as the area D1 in the partition of the acceptance window [0, 1)× [0, 1).

The remaining points a of �([0, 1), [0, 1)) with (a′, a′′) /∈ D1 have a right neighbour
x + Bi , for some i � 2. We again start with the smallest candidate for a tile, which is B2.
B2 corresponds to a tile in �([0, 1), [0, 1)) if there exists a pair (a′, a′′) in [0, 1)× [0, 1)\D1

such that (a′, a′′) + (B ′2, B
′′
2 ) ∈ [0, 1)× [0, 1). Again we see that there exist infinitely many

such pairs (depicted in figure 3 as the area D2) and therefore 	2 := B2 is also a tile of the
quasicrystal.

In this way one can check that 	3 := B3, . . . ,	6 := B6 are tiles in �([0, 1), [0, 1)).
But the points (a′, a′′), to which one can add (B ′7, B

′′
7 ), respectively (B ′8, B

′′
8 ), such that

(a′, a′′)+(B ′7, B
′′
7 ), respectively (a′, a′′)+(B ′8, B

′′
8 ), belongs to [0, 1)× [0, 1) have the property

that there exists Bj with j < 7 such that (a′, a′′) + (B ′j , B
′′
j ) also belongs to [0, 1) × [0, 1).

Therefore, B7 and B8 do not correspond to tiles in �([0, 1), [0, 1)).
However, 	7 := B9 is a tile. Since we have completely covered [0, 1)× [0, 1) with the

areas D1, . . . ,D7, no other tiles longer than 3β2 + β − 1 can occur in �([0, 1), [0, 1)). �

Remark. We remark that diagrams such as figure 3 can be implemented to construct the
tiling sequences of �(�1,�2). We demonstrate the method here for �([0, 1), [0, 1)) based
on figure 3.

Using the partition of [0, 1)×[0, 1) into the areasD1, . . . ,D7 as depicted in figure 3, define
for �([0, 1), [0, 1)) the stepping function f , which assigns to a point a from the quasicrystal
its right neighbour f (a) as follows:

f : �([0, 1), [0, 1))→ �([0, 1), [0, 1)) (23)
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where

f (a) = a + 	k if (a′, a′′) ∈ Dk k = 1, . . . , 7. (24)

Starting from a point x0 ∈ �([0, 1), [0, 1)) we can thus calculate right consecutive
points of x0 as f (x0), f

2(x0), f
3(x0), . . . , f

n(x0), or, left consecutive points of x0 as
f−1(x0), f

−2(x0), f
−3(x0), . . . , f

−n(x0) for any n.
For example, for x0 = 0 we have (x ′0, x

′′
0 ) = (0, 0) ∈ D3, and the right neighbour of 0 is

x1 = f (0) = 	3 = β2. Furthermore, since (x ′1, x
′′
1 )

.= (0.308, 0.643) ∈ D6, the next point
in the quasicrystal is x2 = f 2(0) = x1 + 	6 = 3β2 + β − 1 and so on. The first 13 right
neighbours of 0 in the quasicrystal �([0, 1), [0, 1)) are indicated in the appendix.

For quasicrystals �([c, c + 1), [d, d + 1)) with c, d ∈ R one obtains the corresponding
tiling sequences via a modification of the stepping function by using instead of the areas Di

their shifted copies (c, d) + Di .

We use the results about the reference quasicrystal �([0, 1), [0, 1)) to derive the minimal
tiles in T (l1, l2) with (l1, l2) ∈ LRA.

Let 	 be a tile between two consecutive points x1 < x2 in a quasicrystal �([0, l1), [0, l2)).
Then

	′ = x ′2 − x ′1 ∈ (−l1, l1) ⊂ (−1, 1) and 	′′ = x ′′2 − x ′′1 ∈ (−l2, l2) ⊂ (−1, 1).

This means that 	 is a positive element in the union of the following four quasicrystals:

	 ∈ �([0, 1), [0, 1)) ∪�((−1, 0], (−1, 0])∪�([0, 1), (−1, 0]) ∪�((−1, 0], [0, 1)).

These four quasicrystals thus provide candidates for tiles and for later convenience we
introduce the following short-hand notation:

�+
+ := �([0, 1), [0, 1)) �−− := �((−1, 0], (−1, 0])

�+
− := �([0, 1), (−1, 0]) �−+ := �((−1, 0], [0, 1)).

We have already calculated the positive elements of �+
+ by using the stepping function.

Table A1 in the appendix contains all positive elements of length smaller than 90. Since
�−− = −1 + �((0, 1], (0, 1]), we obtain the positive elements of �−− by a subtraction of −1
from �+

+ and we list them in table A2 in the appendix. Elements of �+
− and �−+ are listed

in tables A3 and A4 in the appendix, respectively; they have been obtained via a stepping
function f , where the corresponding acceptance windows have been split into appropriately
shifted areas Di , i = 1, . . . , 7.

Theorem 3.2. Let 	min(l1, l2) denote the minimal tile in T (l1, l2) with (l1, l2) ∈ LRA. Then
one has

|β ′| < l1 � 1 and |β ′′| < l2 � 1 �⇒ 	min(l1, l2) = β

|β ′2 − 1| < l1 � 1 and |β ′′2 − 1| < l2 � |β ′′| �⇒ 	min(l1, l2) = β2 − 1

|β ′| < l1 � |β ′2 − 1| and |β ′′2| < l2 � |β ′′| �⇒ 	min(l1, l2) = β2

|β ′| < l1 � |β ′2 − 1| and |β ′′2 − 1| < l2 � |β ′′2| �⇒ 	min(l1, l2) = 2β2−1.

Proof. The smallest positive element 	 in the union of the four quasicrystals �+
+ ∪ �+

− ∪
�−+ ∪ �−− which is such that |	′| < l1 and |	′′| < l2 is clearly the minimal distance in the
quasicrystal. From the list of positive elements of the above-mentioned four quasicrystals in
the appendix we thus immediately obtain the result. �

The values of the minimal elements in T (l1, l2) depending on (l1, l2) in the relevant area
LRA are depicted in figure 4.
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Figure 4. Partition of LRA according to the size of the minimal tiles.

3.2. The basic quadruple

A key concept in the proof of the main theorem will be basic quadruples, which we introduce
in this subsection.

Definition 3.3. Let 	 be a tile of a quasicrystal �([0, l1), [0, l2)). Then we call
(sgn(	′), sgn(	′′)) the signature of 	.

The smallest tile of each signature always exists in �([0, l1), [0, l2)) due to the following.

Lemma 3.4. The first positive elements from �+
+,�+

−, �−− and �−+ satisfying (26) belong to
T (l1, l2).

Proof. Consider x ∈ �([0, l1), [0, l2)) such that 0 < x ′ < ε and 0 < x ′′ < ε for

ε < min
	∈T (l1,l2)

{|	′|, |	′′|} (25)

and consider x + 	0 to be the right neighbour of x. Since |	′0|, |	′′0| > ε and (x + 	0)
′ ∈

�1, (x + 	0)
′′ ∈ �2, we must have 	′0 > 0 and 	′′0 > 0. Therefore, the first positive element

z of �+
+ such that

|z′| < l1 |z′′| < l2 (26)

is certainly in T (l1, l2). Since it is the element with signature (+1, +1), we denote this element
as 	+

+ = 	+
+(l1, l2). Similarly, the first positive elements from �+

−,�
−
− and �−+ satisfying (26)

belong to T (l1, l2), which proves the claim. �

Definition 3.5. We denote the tiles of smallest signature of each type in T(l1, l2) by 	+
+,	

+
−,	

−
−

and 	−+ , respectively, and we call the set {	+
+,	

+
−,	

−
−,	−+ } the basic quadruple.

Thus we can assign to any pair of lengths (l1, l2) the basic quadruple of tiles belonging
to T (l1, l2). It can easily be determined via tables A1–A4 in the appendix and we list the
corresponding results in the following lemma.
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Figure 5. Partition of LRA according to the basic quadruples.

Lemma 3.6. In the areas A–L in the partition of LRA shown in figure 5 the set of basic
quadruples coincides and is given by the following list:

Area: ++ +− −+ −−
A 3 1 5 2
B 3 1 5 8
C 3 1 5 11
D 3 6 5 11
E 3 6 5 2
F 3 4 5 2
G 9 4 5 2
H 9 6 5 2
I 9 15 5 2
J 9 6 5 11
K 9 20 5 11
L 9 15 5 11

(27)

where the numbers in the table refer to the numbers of the corresponding tiles in the list (31)
in the appendix.

3.3. The reference quasicrystal �([0, β ′), [0, |β ′′2 − 1|)) and an estimate on the maximal tile

The quasicrystal corresponding to the lower left-hand corner of the relevant area LRA is
�([0, β ′), [0, |β ′′2 − 1|)), and due to (18) it provides estimates on the maximal tile in
T ([0, l1), [0, l2)) with (l1, l2) ∈ LRA. We therefore discuss this case separately here.

Lemma 3.7. The set T (β ′, |β ′′2 − 1|) consists of the basic quadruple

	+
+ = 3β2 + β − 1

.= 16.394 (	+
+)
′ .= 0.479 (	+

+)
′′ .= 0.128

	+
− = 7β2 + 2β − 3

.= 36.84 (	+
−)
′ .= 0.27 (	+

−)
′′ .= −0.10

	−+ = 2β2 − 1
.= 9.10 (	−+ )′ .= −0.38 (	−+ )′′ .= 0.29

	−− = 4β2 + β − 2
.= 20.44 (	−−)′

.= −0.21 (	−−)′′
.= −0.23
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Figure 6. The basic quadruple for �([0, β ′), [0, |β ′′2 − 1|)).

Figure 7. Partition of the acceptance window for the reference quasicrystal �([0, β ′),
[0, |β ′′2 − 1|)).

and furthermore the following tiles:

	5 = 9β2 + 2β − 4
.= 45.93 (	5)

′ .= 0.479 (	5)
′′ .= 0.128

	6 = 12β2 + 3β − 5
.= 36.84 (	6)

′ .= 0.36 (	6)
′′ .= 0.31

	7 = 13β2 + 3β − 6
.= 66.38 (	7)

′ .= −0.33 (	7)
′′ .= −0.05

	8 = 16β2 + 4β − 7
.= 82.76 (	8)

′ .= 0.15 (	8)
′′ .= 0.08.

Proof. We determine the tiles as before from the lists of elements in �+
+,�+

−,�
−
+ and �−−

according to the graphical method used in the case of �([0, 1), [0, 1)). The basic quadruple
is indicated in figure 6. For the quasicrystal points a with (a′, a′′) in the areas 	+

+,	
−
+ ,	+

−
and 	−−, we thus already know the neighbouring points.

For the remaining points a ∈ �([0, β ′), [0, |β ′′2− 1|)) we deduce the corresponding tiles
by reading off the smallest possible tile, say 	5, from the lists in the appendix, such that
a + 	5 ∈ �([0, β ′), [0, |β ′′2 − 1|)). We obtain 	5 = 9β2 + 2β − 4 and augment the set
of points a for which the neighbours are already determined by the corresponding area in
window space, that is the area corresponding to pairs (a′, a′′) to which one may add the vector
(	′5,	

′′
5). We repeat this procedure until we cover the whole acceptance window. We thus

obtain figure 7.
It shows the area covered by the eight tiles of the quasicrystal �([0, β ′), [0, |β ′′2 − 1|)),

and thus proves the claim. �

Due to the inclusion (18) lemma 3.7 provides an estimate on the maximal tile 	max(l1, l2)

in each quasicrystal �([0, l1), [0, l2)) with (l1, l2) ∈ LRA.

Corollary 3.8. The maximal tile in T (l1, l2) with (l1, l2) ∈ LRA is bounded by

	max(l1, l2) � 	max(β
′, |β ′′2 − 1|) = 16β2 + 4β − 7

.= 82.76. (28)
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4. The set of tiles in the general case

The estimate on the maximal tile at the end of the previous section limits the set of possible
tiles T (l1, l2) to those tiles in the lists in the appendix which are smaller than 16β2 + 4β − 7.
This condition is not sufficient, and we can indeed exclude further candidates for tiles from
these lists as follows.

Lemma 4.1. Let 	1,	2 ∈ �+
+ such that

0 < 	1 < 	2 0 < 	′1 < 	′2 0 < 	′′1 < 	′′2.

Then 	2 ∈ T (l1, l2).

Proof. If x, x + 	2 ∈ �([0, l1), [0, l2)), then also x + 	1 ∈ �([0, l1), [0, l2)) and thus x + 	2

is not an immediate neighbouring point of x. Thus 	2 ∈ T (l1, l2). �

For example, such a situation occurs for 	1,	2 ∈ �+
+ with

16.394
.= 	1 = 3β2 + β − 1 < 4β2 + β − 1 = 	2

.= 21.44

because

	′1
.= 0.479 < 	′2

.= 0.79 and 	′′1
.= 0.128 < 	′′2

.= 0.77.

Analogous rules exist for �+
−,�

−
+ and �−− . For example, from the list corresponding to

�+
− we can exclude 	2 if there exists 	1 such that

0 < 	1 < 	2 0 < 	′1 < 	′2 and 0 > 	′′1 > 	′′2. (29)

Applying these rules to the elements from �+
+ , �−+ , �+

− and �−− , we reduce the list of
possible tiles to the following candidates.

Lemma 4.2. T (l1, l2) with (l1, l2) ∈ LRA is a subset of the tiles in the following list:

Six in �+
+ : β2, 3β2 + β − 1, 5β2 + β − 2, 10β2 + 3β − 4, 12β2 + 3β − 5,

16β2 + 4β − 7
Six in �−+ : 2β2 − 1, 3β2 − 1, 6β2 + β − 3, 7β2 + β − 3, 9β2 + 2β − 4,

14β2 + 3β − 6
Six in �+

− : β, β2 + β, 2β2 + β − 1, 5β2 + 2β − 2, 7β2 + 2β − 3,

11β2 + 3β − 5
Seven in�−− : β2 − 1, 3β2 + β − 2, 4β2 + β − 2, 6β2 + 2β − 3, 10β2 + 2β − 5,

13β2 + 3β − 6, 15β2 + 4β − 7.

(30)

They correspond to the following objects in table A5 in the appendix:

++: 3, 9, 14, 31, 35, 48
−− : 2, 8, 11, 17, 28, 38, 44
+− : 1, 4, 6, 15, 20, 33
−+: 5, 7, 16, 19, 26, 41.

(31)

For the sake of keeping the notation brief we will use in the following the numbers in
table A5 in the appendix instead of the tiles themselves.

The strategy of the proof of the main result will consist in finding a suitable partition of
the relevant area LRA such that the set of tiles coincides in each subset of this partition. For
this we need to set up further definitions and results.
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Definition 4.3. We introduce the following ordering on R×R:

(a, b) > (c, d) if a > c and b > d. (32)

Proposition 4.4. Let 	 be a tile in the list (31). Then we have: if 	 ∈ T (l1, l2), then
	 ∈ T (l̂1, l̂2) for all (l̂1, l̂2) with (|	′|, |	′′|) < (l̂1, l̂2) < (l1, l2).

Proof. If 	 ∈ �(l̂1, l̂2) then in the geometric method explained and implemented earlier it
reserves space in the acceptance window [0, l̂1) × [0, l̂2). Since the process of shrinking
the acceptance window is continuous, this space cannot be taken by a smaller tile if
the window lengths are decreased to some (l̂1, l̂2). Thus the tile remains present for all
(l̂1, l̂2) > (|	′|, |	′′|) until it ceases to exist at (|	′|, |	′′|). �

Corollary 4.5. If any of 5, 9, 11, 20, 26, 33 or 38 in table A5 in the appendix is a tile
for �([0, l1), [0, l2)) with (l1, l2) ∈ LRA, then it is also a tile for all �([0, l̂1), [0, l̂2)) with
(l̂1, l̂2) ∈ LRA and (l̂1, l̂2) < (l1, l2).

Furthermore, we have the following proposition.

Proposition 4.6. Let �([0, l1), [0, l2)) with (l1, l2) ∈ LRA and let 	2,	3 ∈ T (l1, l2) be such
that the signatures of 	2 and 	3 differ only in the first (second) place, and let 	1 := 	2 + 	3.
Then a necessary condition for 	1 ∈ T (l1, l2) is

|	′2| + |	′3| > l1 (|	′′2| + |	′′3| > l2). (33)

Proof. Suppose that |	′2| + |	′3| < l1. Then (	′2,	
′′
2) and (	′3,	

′′
3) cover the area in window

space where (	′1,	
′′
1) would be located, and thus 	1 ∈ T (l1, l2). �

Note that the condition in proposition 4.6 is only necessary; it is sufficient only if there is
no smaller tile covering the corresponding area in window space.

As an example consider tile 7 in the list (31), which is the sum of tile 5 and tile 3.
From proposition 4.6 we obtain as a necessary condition for the occurrence of tile 7 in the
quasicrystal that l1 < 2′ and thus tile 7 can only appear when tile 2 disappears. Since there
is no smaller tile occupying the corresponding area in window space, tile 7 indeed appears
precisely when tile 2 disappears when shrinking the size of the acceptance windows. Thus the
subset of LRA corresponding to the lengths of acceptance windows of quasicrystals in which
tile 7 appears is (7′′, 1)× (β ′, 2′), where the value of β ′ in the second interval stems from the
corresponding boundary of the relevant area LRA.

Similarly, from the fact that tile 6 is a sum of tiles 2 and 4 and tile 8 is the sum of tiles 2
and 6 one can conclude that a necessary condition for tile 8 to exist is that tile 4 is not present.

For the convenience of the reader, we recall that LRA denotes the relevant area introduced
in (11) in theorem 2.4, and that T (l1, l2) is the short-hand notation for the set of tiles of a
quasicrystal with acceptance windows of lengths l1 and l2, respectively, as introduced at the
beginning of section 3.

Theorem 4.7. Let the relevant area LRA be divided into 21 areas as depicted in figure 8. If the
pair (l1, l2), that characterizes the quasicrystal with window lengths l1 and l2, respectively,
belongs to the interior of any such area, then the set of tiles T (l1, l2) occurring in this
quasicrystal is given according to the following list:
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Figure 8. Partition of LRA according to theorem 4.1.

Area Set of tiles No of tiles
A1 1, 2, 3, 4, 5, 6, 9 Seven tiles
A2 1, 2, 3, 5, 6, 8, 9, 11 Eight tiles
A3 1, 2, 3, 5, 6, 9, 11, 14 Eight tiles
B1 1, 3, 5, 6, 7, 8, 9, 11, 14 Nine tiles
B2 1, 3, 5, 6, 8, 9, 11, 14, 20 Nine tiles
C 1, 3, 5, 6, 9, 11, 14, 20 Eight tiles
D 3, 5, 6, 9, 11, 14, 20 Seven tiles
E 2, 3, 5, 6, 9, 11, 14 Seven tiles
F 2, 3, 4, 5, 6, 9, 11 Seven tiles
G1 2, 4, 5, 6, 9, 11, 15 Seven tiles
G2 2, 4, 5, 9, 11, 15, 16, 20 Eight tiles
H 2, 5, 6, 9, 11, 14, 15, 20 Eight tiles
I 2, 5, 9, 11, 14, 15, 16, 20, 26 Nine tiles
J1 5, 6, 9, 11, 14, 20, 26 Seven tiles
J2 5, 6, 9, 11, 14, 15, 20 Seven tiles
K1 5, 9, 11, 14, 20, 26, 35 Seven tiles
K2 5, 9, 11, 14, 16, 20, 26 Seven tiles
K3 5, 9, 11, 20, 26, 35, 38, 48 Eight tiles
K4 5, 9, 11, 16, 20, 26, 38 Seven tiles
L1 5, 9, 11, 14, 15, 16, 20, 26 Eight tiles
L2 5, 9, 11, 15, 16, 20, 26, 38 Eight tiles

(34)

where the numbers in the second column refer to the numbers of the tiles in table A5 in the
appendix. If the pair (l1, l2) belongs to the boundaries of several areas, then the set of tiles
T (l1, l2) is given as the intersection of the sets of tiles corresponding to the adjacent areas.
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Note that the areas in figure 8 are labelled as A1–L2, where the letters refer to the partition
according to the basic quadruples displayed in figure 7.

Corollary 4.8. T (l1, l2) with (l1, l2) ∈ LRA is a subset of the tiles in the following list (numbers
referring again to the list (31)):

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 20, 26, 35, 38, 48. (35)

Proof. We start by introducing a partition P of LRA, which refines the partition of LRA related
to the basic quadruples in figure 5 . P is constructed by taking the intersection of the area LRA

(located in the (x, y)-plane) with the lines corresponding to the vanishing of tiles in the set of
possible candidates in lemma 4.2. These are given in ascending order by the following lines:

• Horizontal lines

y = |15′′| = |5β ′′2 + 2β ′′ − 2|
y = |14′′| = |5β ′′2 + β ′′ − 2|
y = |16′′| = |6β ′′2 + β ′′ − 3|
y = |44′′| = |15β ′′2 + 4β ′′ − 7|
y = |41′′| = |14β ′′2 + 3β ′′ − 6|
y = |13′′| = |5β ′′2 + β ′′ − 3|

(36)

y = |19′′| = |7β ′′2 + β ′′ − 3|
y = |17′′| = |6β ′′2 + 2β ′′ − 3|
y = |1′′| = |β ′′|
y = |8′′| = |3β ′′2 + β ′′ − 2|
y = |7′′| = |3β ′′2 − 1|.

(37)

• Vertical lines

x = |16′| = |6β ′2 + β ′′ − 3|
x = |15′| = |5β ′2 + 2β ′′ − 2|
x = |2′| = |β ′2 − 1|
x = |31′| = |10β ′2 + 3β ′′ − 4|
x = |28′| = |10β ′2 + 2β ′′ − 5|
x = |4′| = |β ′2 + β ′′|.

(38)

Then the strategy of the proof is as follows. In the interior of each area �i in the partition
P we choose a point

(
li1, l

i
2

)
, called the representative point of �i , which corresponds to the

quasicrystal �
([

0, li1
)
,
[
0, li2

))
. For this quasicrystal, we use the graphical method explained

and implemented before to obtain the corresponding set of tiles T
(
li1, l

i
2

)
. We then introduce

a more coarse-grained partition P ′ by forming the union of those areas for which the sets of
tiles T

(
li1, l

i
2

)
of their representative points coincide. The partition P ′ obtained in this way is

illustrated in figure 8.
It remains to show that the set of tiles is invariant for each area in the partition P ′, that

is that the boundaries of the areas in this partition indeed mark the borderline at which the
sets of tiles change. But due to proposition 4.4 we know that if 	 is a tile and 	 ∈ T (l̂1, l̂2),
then 	 ∈ T (l1, l2) for (l1, l2) > (l̂1, l̂2). Furthermore, we know that if 	 ∈ T (l̂1, l̂2),



4106 E Pelantová and R Twarock

Table 1. Change of tiles upon transition between adjacent areas in P ′.
Transition Tile lost Tile(s) gained Transition Tile lost Tile(s) gained

A1|A2 4 8, 11 G1|H 4 14, 20
A1|A3 4 11, 14 H |J2 2 ∅
A2|A3 8 14 J2|J1 15 26
A2|B1 2 7, 14 G1|G2 6 16, 20
A2|B2 2 14, 20 H |I 6 16, 26
B1|B2 7 20 J2|L1 6 16, 26
B2|C 8 ∅ J1|K2 6 16
A3|C 2 20 J1|K1 6 35
C|D 1 ∅ G2|I 4 14, 26
A3|E 1 ∅ I |L1 2 ∅
A1|F 1 11 L1|K2 15 ∅
F |E 4 14 K2|K1 16 35
E|D 2 20 K1|K3 14 38, 48
F |G1 3 15 K2|K4 14 38
E|H 3 15, 20 L1|L2 14 38
D|J1 3 26 L2|K4 15 ∅
D|J2 3 15 K4|K3 16 35, 48

then 	 ∈ T (l1, l2) for all (l1, l2) ∈ LRA with (|	′|, |	′′|) < (l1, l2) < (l̂1, l̂2). Thus any
T (l1, l2) for (l1, l2) ∈ LRA corresponds to a set T

(
li1, l

i
2

)
, where

(
li1, l

i
2

)
is one of the reference

points.
It thus only remains to show that the change of tiles happens precisely at the boundaries of

the areas inP ′. To prove this, we do a case study based on proposition 4.6. As a preparation, we
collect in table 1 the information about the change of tiles between quasicrystals corresponding
to reference points in adjacent areas, say A,B, in the partition P ′. In particular, the notation
A|B denotes a transition from T (l1, l2) with (l1, l2) in the area A to (l1, l2) in the area B.

The fact that transitions take place in all these cases precisely at the boundary between the
corresponding areas in the partition P ′ then follows via proposition 4.6 from table 2. Table 2
shows that, when shrinking the size of the acceptance windows, the loss of the tiles (listed in
the middle column in table 1) corresponds to the gain of the tiles listed in the right column of
table 1.

Together with the fact that, by definition of the partition P ′, the loss of tiles coincides
with the boundaries of the areas in P ′, this shows that the transitions take place precisely at
the borderline between the areas in the partition P ′, which thus proves the theorem. �

It is apparent from the proof that the boundaries and corner points of the areas in the
partition P ′ are singular cases. We consider two characteristic examples.

• T (l1, l2) corresponding to the edges of areas in the partition P ′. According to theorem
4.7, the corresponding sets of tiles are obtained as the intersection of the sets of
tiles corresponding to the adjacent areas which have this edge in common. For
example, �([0, l1), [0, l2)) with (l1, l2) ∈ A1 ∩ A2 is a six-tile quasicrystal with
T (l1, l2) = {1, 2, 3, 5, 6, 9} (numbers again referring to the list (31)).
• T (l1, l2) corresponding to the corner points of an area in the partition P ′. Again according

to theorem 4.7, the corresponding sets of tiles are obtained as an intersection of the
sets corresponding to the adjacent areas which have this corner point in common. For
example, �([0, l1), [0, l2)) with (l1, l2) ∈ ∩iKi (see figure 8) is a five-tile quasicrystal
with T (l1, l2) = {5, 9, 11, 20, 26}.
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Table 2. Identities sustaining the fact that tiles are lost at the border line between adjacent areas
in P ′.
Transition Follows from

A1|A2 |2′| + |6′| = |4′|
A1|A3 |5′| + |9′| = |4′|
A2|A3 |3′′ | + |11′′| = |8′′|
A2|B1 |3′| + |5′| = |2′|
A2|B2 |3′| + |5′| = |9′| + |11′| = |2′|
B1|B2 |6′′ | + |14′′| = |7′′|
B2|C Trivial
A3|C |9′| + |11′| = |2′|
C|D Trivial
A3|E Trivial
A1|F |5′′ | + |6′′| = |1′′|
F |E |5′| + |9′| = |4′|
E|D |9′| + |11′| = |2′|
F |G1 |9′′ | + |6′′| = |3′′|
E|H |11′′ | + |14′′| = |9′′| + |6′′ | = |3′′ |
D|J1 |11′′ | + |14′′| = |3′′|
D|J2 |9′′ | + |6′′| = |3′′|
G1|H |9′| + |5′| = |15′| + |11′| = |4′|
H |J2 Trivial
J2|J1 |20′ | + |5′| = |15′|
G1|G2 |11′′ | + |5′′| = |15′′| + |9′′ | = |6′′ |
H |I |11′′ | + |5′′| = |6′′|
J2|L1 |11′′ | + |5′′| = |6′′|
J1|K2 |11′′ | + |5′′| = |6′′|
J1|K1 |14′′ | + |20′′| = |6′′|
G2|I |5′| + |9′| = |4′|
I |L1 Trivial
L1|K2 Trivial
K2|K1 |9′| + |26′| = |16′|
K1|K3 |26′′ | + |11′′| = |14′′ |
K2|K4 |26′′ | + |11′′| = |14′′ |
L1|L2 |26′′ | + |11′′| = |14′′ |
L2|K4 Trivial
K4|K3 |26′ | + |9′| = |20′| + |38′| = |16′|

A case study shows that indeed five is the smallest number of tiles that can occur in any
quasicrystal (1.1).

Finally we have the following corollary.

Corollary 4.9. For any T (l1, l2) with l1 > 0 and l2 > 0 there exist s, t ∈ Z and T (l̂1, l̂2) with
(l̂1, l̂2) ∈ LRA such that

T (l1, l2) = βs(β ′)lT (l̂1, l̂2). (39)

Proof. It follows via (12), (13) and (15) from theorem 4.7. �

5. Conclusion

We have provided the first analysis of the set of tiles of a cut-and-project quasicrystal or model
set related to a cubic irrational number. Our analysis has shown that in the case of the irrational



4108 E Pelantová and R Twarock

number β, which is related to 7-fold rotational symmetry, there are always at least five and at
most nine different tiles, where the sets of tiles with cardinality 5 describe singular cases in
the sense that they occur only for a finite number of points (l1, l2) in the relevant area LRA,
while all other cases occur infinitely many times in LRA.

Furthermore, one observes that for any choice of acceptance window all tiles are integer
linear combination of a basic quadruple of tiles and that due to the structure of these basic
quadruples there are either three or four building blocks in each set of tiles T (l1, l2) from
which the whole set is constructed. This result is in contrast to the situation characteristic
of quadratic irrational numbers where either two or three different tiles exist, and where we
always have two building blocks.

The gaps in tiling sequences of quasicrystals related to quadratic irrational numbers
correspond to the so-called three gap theorem in number theory [23–25], which has
implications not only for the study of quasicrystals but also for various areas in mathematical
physics, chemistry and computer science. For example, it has applications in the theory
of dynamical systems, where it can be used to determine recurrence times [11, 15], in the
description of molecular vibrations [24, 25], in multiplicative hashing [8, 10], in mathematical
models of the ventricular parasystole [9] or in a study of phyllotaxis [21]. Our results in
this paper correspond to a generalization of the three gap theorem to two dimensions for
a particular choice of irrational numbers and we thus expect that it has also applications
beyond the theory of quasicrystals, for example, in the areas listed above. We finally
point out that until now, there have only existed numerical results [24, 25] concerning
generalizations of the three gap theorem to higher dimensions and that this is the first analytical
result.

Appendix

In this section we use the notation 	i, i = 1, . . . , 7, for the tiles of �([0, 1), [0, 1)) according
to lemma 3.1.

Table A1. The points of �([0, 1), [0, 1)) = �+
+ .

Quasicrystal Approximate Approximate Distance to the
point x value of x value of (x′, x′′) right neighbour

0 0 (0, 0) 	3

β2 5.049 (0.308, 0.643) 	6

3β2 + β − 1 16.394 (0.479, 0.128) 	3

4β2 + β − 1 21.44 (0.79, 0.77) 	2

5β2 + β − 2 25.49 (0.09, 0.41) 	4

6β2 + 2β − 2 32.79 (0.96, 0.25) 	5

8β2 + 2β − 3 41.89 (0.57, 0.54) 	5

10β2 + 2β − 4 50.98 (0.19, 0.83) 	1

10β2 + 3β − 4 53.23 (0.74, 0.03) 	5

12β2 + 3β − 5 62.33 (0.36, 0.31) 	3

13β2 + 3β − 5 67.38 (0.67, 0.95) 	6

15β2 + 4β − 6 78.72 (0.84, 0.43) 	2

16β2 + 4β − 7 82.76 (0.15, 0.08) 	3

17β2 + 4β − 7 87.81 (0.46, 0.77) 	6
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Table A2. The points of �((−1, 0], (−1, 0]) = �−− .

Quasicrystal Approximate Approximate Distance to the
point x value of x value of (x′, x′′) right neighbour

0 0 (0, 0) 	2

β2 − 1 4.049 (−0.69, −0.36) 	6

3β2 + β − 2 15.394 (−0.521, −0.872) 	3

4β2 + β − 2 20.44 (−0.21, −0.23) 	2

5β2 + β − 3 24.49 (−0.91, −0.59) 	4

6β2 + 2β − 3 31.79 (−0.04, −0.75) 	5

8β2 + 2β − 4 40.89 (−0.43, −0.46) 	5

10β2 + 2β − 5 49.98 (−0.81, −0.17) 	1

10β2 + 3β − 5 52.23 (−0.26, −0.97) 	5

12β2 + 3β − 6 61.33 (−0.64, −0.69) 	3

13β2 + 3β − 6 66.38 (−0.33, −0.05) 	6

15β2 + 4β − 7 77.72 (−0.16, −0.57) 	2

16β2 + 4β − 8 81.76 (−0.85, −0.92) 	3

17β2 + 4β − 8 86.81 (−0.54, −0.28) 	6

Table A3. The points of �((−1, 0], [0, 1)) = �−+ .

Quasicrystal Approximate Approximate Distance to the
point x value of x value of (x′, x′′) right neighbour

0 0 (0, 0) 	5

2β2 − 1 9.098 (−0.384, 0.286) 	3

3β2 − 1 14.147 (−0.076, 0.930) 	2

4β2 − 2 18.20 (−0.76, 0.57) 	6

6β2 + β − 3 29.54 (−0.60, 0.06) 	3

7β2 + β − 3 34.59 (−0.29, 0.70) 	2

8β2 + β − 4 38.64 (−0.98, 0.34) 	3

9β2 + β − 4 43.69 (−0.67, 0.986) 	1

9β2 + 2β − 4 45.93 (−0.12, 0.18) 	5

11β2 + 2β − 5 55.03 (−0.50, 0.47) 	5

13β2 + 2β − 6 64.13 (−0.88, 0.76) 	4

14β2 + 3β − 6 71.43 (−0.02, 0.60) 	2

15β2 + 3β − 7 75.47 (−0.71, 0.24) 	3

16β2 + 3β − 7 80.52 (−0.40, 0.88) 	6

Table A4. The points of �([0, 1), (−1, 0]) = �+−.

Quasicrystal Approximate Approximate Distance to the
point x value of x value of (x′, x′′) right neighbour

0 0 (0, 0) 	1

β 2.247 (0.555, −0.802) 	3

β2 + β 7.30 (0.86, −0.16) 	2

2β2 + β − 1 11.345 (0.171, −0.516) 	7

5β2 + 2β − 2 27.74 (0.65, −0.39) 	5

7β2 + 2β − 3 36.84 (0.27, −0.10) 	1

7β2 + 3β − 3 39.08 (0.82, −0.90) 	5

9β2 + 3β − 4 48.18 (0.44, −0.61) 	5
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Table A4. (Continued.)

Quasicrystal Approximate Approximate Distance to the
point x value of x value of (x′, x′′) right neighbour

11β2 + 3β − 5 57.28 (0.06, −0.32) 	4

12β2 + 4β − 5 64.57 (0.92, −0.48) 	2

13β2 + 4β − 6 68.61 (0.23, −0.84) 	3

14β2 + 4β − 6 73.66 (0.54, −0.20) 	6

16β2 + 5β − 7 85.02 (0.703, −0.719) 	5

Table A5. Candidates for tiles for quasicrystals �([0, l1), [0, l2)) with (l1, l2) ∈ LRA.

Number Tile Signature Number Tile Signature

1 β +− 25 9β2 + β − 4 −+
2 β2 − 1 −− 26 9β2 + 2β − 4 −+
3 β2 ++ 27 9β2 + 3β − 4 +−
4 β2 + β +− 28 10β2 + 2β − 5 −−
5 2β2 − 1 −+ 29 10β2 + 2β − 4 ++
6 2β2 + β − 1 +− 30 10β2 + 3β − 5 −−
7 3β2 − 1 −+ 31 10β2 + 3β − 4 ++
8 3β2 + β − 2 −− 32 11β2 + 2β − 5 −+
9 3β2 + β − 1 ++ 33 11β2 + 3β − 5 +−

10 4β2 − 2 −+ 34 12β2 + 3β − 6 −−
11 4β2 + β − 2 −− 35 12β2 + 3β − 5 ++
12 4β2 + β − 1 ++ 36 13β2 + 2β − 6 −+
13 5β2 + β − 3 −− 37 12β2 + 4β − 5 +−
14 5β2 + β − 2 ++ 38 13β2 + 3β − 6 −−
15 5β2 + 2β − 2 +− 39 13β2 + 3β − 5 ++
16 6β2 + β − 3 −+ 40 13β2 + 4β − 6 +−
17 6β2 + 2β − 3 −− 41 14β2 + 3β − 6 −+
18 6β2 + 2β − 2 ++ 42 14β2 + 4β − 6 +−
19 7β2 + β − 3 −+ 43 15β2 + 3β − 7 −+
20 7β2 + 2β − 3 +− 44 15β2 + 4β − 7 −−
21 8β2 + β − 4 −+ 45 15β2 + 4β − 6 ++
22 7β2 + 3β − 3 +− 46 16β2 + 3β − 7 −+
23 8β2 + 2β − 4 −− 47 16β2 + 4β − 8 −−
24 8β2 + 2β − 3 ++ 48 16β2 + 4β − 7 ++
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